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SUMMARY OF CONTENT
This supplementary material provides some implementation details
as well as additional results and comparisons that would not fit in
the main document.

The first few sections cover additional technical aspects. Sec. 1 de-
scribes our validity checks and the user feedback we provide. Sec. 2
introduces the additional notion of curvature as well as a measure of
time stretch. Sec. 3 describes our topological opening procedure be-
tween the time and region computations. Sec. 4 provides additional
details about the graph computations including the user threshold
∆tmin for making a typical region graph more ideal. Sec. 5 details the
implementation of our stitch sampling optimizations. Sec. 6 presents
our geodesic distance computation, and the acceleration scheme
we use to make it computationally affordable. Sec. 7 describes the
issue of alignment underlying our stitch graph sampling strategy.
Sec. 8 goes over the additional layout representations we use to
allow mixed flat/tubular scheduling.
The second part discusses scalability and controlability within

our system. Sec. 9 goes over the complexity of our results, their
corresponding runtimes, and further provides convergence insights.
Sec. 10 describes different aspects of the garment finish and provides
visual comparisons showcasing lower-level user controls.

The remaining of the document focuses on providing additional
results in larger sizes to allow proper inspection and interpretation.
It starts with detailed views of each of our results including the in-
puts and intermediate visualizations, as well as user stitch programs.
It ends by showing the evolution of some of the results illustrating
their iterative nature, which our system enables.

1 VALIDITY OF TIME FUNCTION
The continuous time function is used to decompose the final garment
into a set of simple knittable regions. After its computation, we
provide two different types of feedback: 1) checks for the feasibility
of a region decomposition and 2) warnings when the direction
field changes too fast locally, as well as when the local time stretch
becomes large (see Sec. 2 for its definition).

Feasible Region Decomposition. The main requirement is that local
time extrema do not occur at vertices that are strictly inside the do-
main of a chart. This restriction is similar to that of Narayanan et al.
[2018]. Our system further allows time extrema on chart boundaries
that are not manifold boundaries (i.e., closed cast-on and cast-off
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seam locations), and which get automatically transformed into ac-
tual manifold boundaries via topological opening (see Sec. 3). To
verify the time requirement, we compute the set of local time ex-
trema at vertices in our sample mesh. Our interpolation scheme
guarantees that point-wise extrema can only occur at mesh vertices.

Knittability. While those validity checks provide useful feedback,
they are in no way sufficient to ensure that we end up with a “knit-
table” result. This is because we should also take into account the
problem of scheduling the stitch graph which gets sampled a poste-
riori. That problem is much more involved, and we do not provide
any guarantees. Instead we rely on a best-effort strategy which can
unfortunately fail in some scenarios involving complex flat structure
interactions.

Intuitively, the mixing of flat with tubular structures can eventu-
ally represent any form of 2-manifold surface, and while this leads
to obvious scheduling scalability issues as discussed in Sec. 8, it also
makes it hard to provide guarantees w.r.t. to knittability without
restricting the design space.

2 CURVATURE AND TIME
We investigate the addition of a curvature term κ = ∥∇t ∥ as part of
our time function decomposition. The decomposition presented in
the main paper together with the integration scheme both assume
that the sketch charts are contained in planes that are bound to-
gether. However, our time isoline constraints typically induce local
curvature and thus lead us to violate such assumption.
We here consider an extension of the integration scheme that

includes the notion of curvature κ as the magnitude of the local
time gradient of t . Our time integration update stays the same

t(v) ← 1
|L(v)|

Õ
s ∈L(v)

1
|N(s)|

Õ
sN ∈N(s)

[t(sN) + dt(sN → s)] (1)

whereas the local time difference dt(· → ·) now includes the local
magnitude κ(·) to scale the direction as

dt(sN → s) = 1
2 [κ(sN)ϕ(sN) + κ(s)ϕ(s)] · [p(s) − p(sN)]. (2)

In practice, our system tends to work and converge in a stable
way without requiring any curvature information (i.e., κ = 1), as
long as the user time constraints are not contradicting and do not
induce large curvature.
Specifically, close-by isoline constraints can induce large local

curvature, and those specific cases tend to make our integration
unstable in the region of induced high curvature as shown in Fig. 1.
In such cases, specifying the local curvature κ(·) becomes necessary
to get a proper time function without local time extrema in the
interior of the sketch domains.
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(a) Annotations (b) Time, κ = 1 (c) Time stretch, κ = 1 (d) User-defined κu (e) Time, κu (f) Time stretch, κu

Fig. 1. Notion of time stretch and its correspondence with the local curvature in a case where it is needed for proper time convergence. From left to
right: (a) the closed tubular rectangle with its full annotations (time isolines + curvature), (b) the time result without user curvature, which has
invalid local time extrema in the center-left section (triangular warning signs); (c) the corresponding time stretch (red when κ < 1, pink when
κ > 1); (d) the user-defined curvature; (e) the time result using the user curvature converges properly without local time extrema in the curvature
region; (f) the time stretch is similar although more pronounced.

One way to visualize some form of induced curvature from the
time is by using what we call the time stretch, which we provide as
a visualization layer. It appears to be helpful in selecting where to
introduce curvature when needed. Computationally speaking, we
define it as

ts(v) = 2 ×
Í
s ∈N(v) |t(s) − t(v)|

|N(v)| , (3)

where N(v) = Ð
s ∈L(v) N(s) is the union set of the sample neigh-

bors from each sample image s of vertex v .
Intuitively, when the flow is straightforward and there is no

curvature, the average absolute delta time around a sample should
be approximately 1

2 (thus the 2× factor in front). This is because the
delta time forward is +1, the delta time backward is −1, whereas
both lateral sides have delta time 0. This measure behaves similarly
to the curvature κ(s), which is 1 by default, smaller than 1 when the
time is going slower, and larger when going faster.

We use the time stretch to provide feedback to the user when we
detect abnormal values, which corresponds to large local curvature,
and thus a higher likelihood of local time extrema.

3 TOPOLOGICAL OPENING
As a post-processing step after the time function computation (or
pre-processing step before the region computation), we topologi-
cally open the sketch domain at boundary locations where we have
closed sources or sinks of the time function. By assumption, valid
sources and sinks must be either (1) on the boundary of the manifold
(i.e., unlinked borders of the sketches), or (2) at a local extremum
on linked borders of the sketches.
The topological opening targets the latter case and makes it ap-

pear the same as the former so that the region computation becomes
simpler. Furthermore, our system currently keeps those openings in
the final garment artifact. The closing of those regions can be done
automatically using specific cast-off procedures, but keeping them
open simplifies scheduling and code generation.
There are two scenarios for the topological opening. Fig. 2 illus-

trates both, using the top of the beanie as an example sink to be
opened. In general, the sources/sinks are either:
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Fig. 2. Illustration of the topological opening at the closed top of the
beanie for two different time extrema: edgewise and pointwise. The
top views show the opening in the center and a corresponding isoline
profile (dashed lines).

(1) Edgewise - distributed on a portion of the sketch boundaries,
or

(2) Pointwise - concentrated at a single vertex.
In the first edgewise case, we can simply break the link connections

on the mesh in the interior of the isoline. Tracing does the rest. In
the second pointwise case, we use an offset isoline at the closest
vertex nearby to represent the source/sink isoline.

The physical beanie result is of the singular case, which we knit
with an open top, and manually close by passing thread across all
last stitches and pulling a thread which we close inside of the beanie.

4 REGION GRAPH PROCESSING DETAILS
The first part considers how many dependency paths are necessary
to properly resolve the garment regions. The second part explains
the user control ∆tmin on the maximum region extents.
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Fig. 3. Illustration of the adjacent region merging at a separating
vertex. Segments σup

1 and σup
2 from the trunk region can reach each

others, thus the front and back span the same region. Circulating
around the sleeve region has no effect since it is upper-bounded by a
single segment σup

3 . As for the segments on the other side of the isoline
(lower segments of the upper neck region), all get merged together:
σ low
1 reaches σ low

3 on the right, and σ low
2 reaches σ low

3 on the left.

4.1 Necessary Dependency Paths
Our region computation initially allocates two regions per isoline
segment. Intuitively, one should not need more because the seg-
ments represent the potential sides of the regions at the interfaces,
and different regions neighbor either (1) different segments, or (2)
same segments, but on different sides.
The choice of dependency path is actually important to ensure

we properly merge all regions. Tracing two dependency paths per
isoline segment (one upward and one downward) is sufficient to re-
solve all the initial regions since each allocated region gets resolved.
However, this can lead to too many regions if the side regions are
not merged properly. We consider two options to properly resolve
regions laterally:

(1) Merging regions by circulating around separating vertices;
(2) Explicitly tracing all sketch boundaries as dependency paths.
The former option actively merges regions around separating ver-

tices when they are reachable. Fig. 3 shows such merging happening
at the original sweater’s armpit.

The latter option relies on the fact that separating vertices all arise
on the sketch boundaries, and thus, by tracing dependency paths
along all sketch boundaries, we end up automatically merging all
regions that need merging around those separating vertices. This is
the strategy we use.

4.2 Graph Post-Processing and ∆tmin
In practice, due to small asymmetries in the user input, we often
end up with a graph that is not ideal.
Our region graph can easily end up with many small regions in

between (or at the boundaries of) larger regions. For example, the
case of the 3-way merge interface of the sweater assumes that we
end up with an identical time at both armpits. Here, we measure
specifically the time extents ∆t(r ) of some region r = (ei , ej ) ∈ R as
the time range across its boundaries: ∆t(r ) = |t(Lj ) − t(Li )|.
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Fig. 4. (Left) the original graph of the shirt example when the sources
and sinks are not sufficiently constrained – e.g., no hard time isoline
constraints are set on the sketch boundaries –, (right) its reduced graph
that looks identical to the ideal one.

Our system allows the user to tune the minimum allowable time
extents ∆tmin. Given that threshold, we reduce the original region
graph by iteratively collapsing any simple region whose extents
are too low, until either all regions have sufficient time extents, or
there remains only one simple region. Simple regions that collapse
become parts of new interface nodes.
Fig. 4 illustrates the impact of region collapsing on an insuffi-

ciently constrained sketch atlas so that its graph is reduced into one
that is a more ideal one. The example corresponds to the sweater
with the cat colorwork in the main paper.

In practice, this control is desirable because slight variations of
the charts and time function can lead to large variations of the region
topology, notably near the source and sink locations. In particular,
small offsets may inadvertently introduce clusters of critical isolines
that are very close to one another, resulting in simple regions that
may be too small to hold any stitches during the later sampling and
instantiation processes. By pruning these small regions, we increase
the robustness of our algorithm, and allow the user to control for
any ϵ-errors in the chart sketches and constraints a posteriori.

5 IQP PROBLEMS
Our stitch graph computation involves several optimizations that are
formulated as Integer Quadratic Programming problems with linear
constraints. While constrained IQPs are NP-hard in the general case,
we explain how our formulations can be solved efficiently.

Our general strategy is to start with the relaxed version of the
problem for which we can get a reasonable solution quickly using
the NLOpt [Johnson 2014] library. We use the Improved Augmented
Lagrangian Method [Birgin and Martínez 2008] as global solver,
and L-BFGS [Liu and Nocedal 1989] as local solver. The result is
then rounded to the closest integers, which results in the first initial
variable state we start from. From there, we use a branch-and-bound
strategy to explore the integer solution space, subject to some limited
time budget.
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5.1 Global Stitch Problem
The first interface sampling optimization searches for global stitch
numbers ni on the edges ei of our bipartite region graph:

argmin
n

λcrs
Õ
ei ∈E

Ecrs(ni ) + λsmpl
Õ

(ei ,ej )∈R
Esmpl(ni ,nj )

s.t. ∀ η ∈ Iinternal,
Õ

ei ∈Ein
η

ni =
Õ

ej ∈Eout
η

nj .

First, note that our graph’s bipartite structure simplifies the problem,
as the constraints must have mutually disjoint variable supports:
each ni can only appear in at most one constraint. This means that
the constraints cannot introduce any complex variable dependencies.
Thus, in practice, a relaxed non-integer solution can effectively be
made into a suitable integer solution by simply rounding the values,
and then locally adjusting any variables that violate the constraints.
While this does not ensure that we get to the global optimum quickly,
it at least ensures that we can get a valid solution quickly.

The other aspect to consider is the number of equality constraints
that grows linearly with |I |. To improve convergence, we remove
the interface equality constraints via variable aliasing. With this
approach, we only allocate an explicit variable for q − 1 of the q
unknowns associated with any particular equality constraint; the
value of the remaining unknown is defined implicitly. In the trivial
1-to-1 case, we only need one variable per interface (instead of
two). For the general N -to-M merge/split, we can use only N +
M − 1 variables, with a single inequality constraint that requires
the remaining variable to be positive. This reduces the number
of variables greatly, while removing all equality constraints, and
adding a small number of inequality constraints.

5.2 Local Stitch Problems
The local region optimization tackles two different sizing problems:
(1) along the wale direction, and (2) along the course direction. Both
are solved for each region (ea, eb ) ∈ R.
5.2.1 Wale Problem. Recall that the first sizing problem seeks a
number N of isoline segment sets Si ∈ U to allocate along a region,
as well as short-row densities rk in between each pair (Si ,Sj ) ∈ A
:

argmin
N , r

Õ
(Si ,Sj )∈A

�
λwaleEwale(Si ,Sj ) + λsrsEsrs(Si ,Sj )|                                          {z                                          }

ENi , j

�
.

We first estimate the expected number N ∗ based on Dwale, which
indicates the expected distance between the centers of adjacent
wale-connected stitches. For region (ea, eb ), that number is

N ∗ = |t(eb ) − t(ea )|/Dwale. (4)

Then, to select our final value of N , we evaluate several integer
values around our initial guess N ∗ and keep the one with the lowest
energy

Í
ENi , j . This energy involves solving for r in each of the

independent sub-problems ENi , j .
For a given N , we solve for r in ENi , j by: (1) finding the relaxed

solution with NLOpt, initialized with the solution given by the wale
term Ewale, then (2) directly rounding it to the closest integer, and

(3) enforcing that at least one sample gets rk = 0. While we could
use a more complex branch-and-bound strategy to find the global
optimum, the computational cost would become prohibitive, as it
must be executed for every sub-region, for each selection of N , over
every simple region.

5.2.2 Course Problem. The second sizing problem seeks local stitch
numbers with a formulation that appears very similar to the global
stitch problem. The main difference is the set of constraints and
their inter-dependencies:

argmin
m

λcrs
Õ

Si ∈U
Ecrs(mi ) + λsmpl

Õ
(Si ,Sj )∈A

Esmpl(mi ,mj )

s.t. ∀ (Si ,Sj ) ∈ A, �
mj/Fmax

� ≤ mi ≤
�
mj Fmax

�
.

The constraints of this local problem are box constraints that in-
teract in a sequential manner. This sequential interaction makes it
again possible to quickly find at least one solution. Furthermore, by
constraining the minimum number of subdivisions N based on the
global stitch counts at the region’s start and end interfaces, we can
ensure that we have a feasible solution.

6 GEODESIC COMPUTATIONS
We describe our strategy to compute the geodesic distance G(p,q)
between two locations p and q, possibly in different charts of a same
atlas. Practically speaking, we focus on computing the shortest path
from p to q (i.e., the geodesic path), whereas the distance G(p,q) is
the length of that path.
We require the distance to measure the degree of alignment be-

tween different locationswithin our stitch graph sampling algorithm.
We further require the path so as to sample short-row stitches along
stitch wales. Having proper sketch embedding of the stitches mat-
ters for two purposes: 1) for visualization, which matters for seam
editing, and 2) to allow location-based pattern queries and editing.
Our strategy is of hierarchical nature. Our main observation is

that when the distance is large, we do not need to be very precise,
whereas when we get closer to the target, we would appreciate to
get the exact geodesic path.

In a precomputation stage, we store the geodesic distance between
any two samples of the finest level of themesh data structure holding
the time function. The distances do not necessarily need to be exact,
so a simple strategy is to use N instantiation of Dijkstra based
on the mesh connectivity (for N vertices). We instead use the Heat
Method [Crane et al. 2017] to get a more precise continuous measure.

Given the precomputation table, upon a query between locations
p and q, we compute their sample neighborhood in the mesh (edge
or face). If the neighborhood is the same, the geodesic path is trivial
and we’re done. If they are not, we create an approximate path by
linking p and q to all their sample neighbors (2 on an edge, 3 in a
triangle and 4 in a quad) and picking the shortest path between any
pair of those samples across sides.

This approximation is then tested against a refinement threshold
– we set it to 3∆s where ∆s is the distance between two adjacent
grid samples. If it is above the threshold, we return the approximate
path and its distance.

If it is below, we refine the path by computing the exact geodesic
path between two points as described in Surazhsky et al. [2005]. To
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further restrict the search space during the edge-window propaga-
tion, we only consider the neighborhoods adjacent to our initial
approximate geodesic path.

7 STITCH SAMPLING AND ALIGNMENT
Multiple steps of our sampling algorithm rely on the notion of
geodesic distance between sampled locations on the sketch atlas.
While our geodesic computation strategy deals with one part of the
problem, how we pick the sampled locations can matter as much in
practice. The issue of sample location naturally arises in two steps:
(1) during the short-row density computation of region sampling,
and (2) from stitch instantiation to wale distribution.

7.1 Short-row Density Alignment
The computation of the local short-row densities ri assumes K pairs
of samples that are uniformly sampled between two adjacent isoline
segment sets Si and Sj . Recall that the goal of that computation is
to maximize the wale accuracy across a simple region.
Instead of computing the number of short-row stitches directly,

the computation uses representative short-row densities that are
sampled along the isoline pairs. In practice, we uniformly sample
K samples independently on each isoline, and then we create the
pairs by matching the samples across both sides with Dynamic Time
Warping (DTW).
The number of samples pairs K is chosen based on the isoline

lengths and the mesh resolution ∆s . Since the mesh interpolation
of t is linear, sampling beyond the mesh resolution brings very
limited benefit. However, one subtle issue is that our uniformly
spaced K samples on both sidesSi andSj have a potential unknown
global shift (rotation of circular courses). Increasing the resolution
decreases the impact of such global shift on the systematic alignment
error, but increasing the stitch resolution also enhances that issue.

An adaptive solution to this problem is to complement the sample-
pair DTW-based alignment with a further refinement that iteratively
attempts to reduce the global sample shift through a sub-sample
alignment procedure. Given K aligned samples {si ,k } and {sj ,k }
along adjacent isoline segment sets Si and Sj , we successively look
for global shifts that would improve the full alignment. We pick the
potential shifts by subdividing the interval between two neighboring
samples in a binary fashion while searching for a shift that reduces
the alignment error. We use a fixed number of subdivision levels (5)
but this could be adapted with the stitch scale.
Instead of applying this procedure to each sub-region, we only

apply it if the global alignment shows an average distance that is
unexpectedly large (i.e., short-row densities above 0 on at least half
of the samples). For smooth time functions, short-rows are only
needed sparsely and such adaptive sub-sample alignment procedure
ends up only firing where (i) short-rows are needed, or (ii) the
random offset is large.

7.2 Stitch Course Alignment
The uniform stitch distribution during the creation of courses leads
to a similar potential misalignment during wale distribution. How-
ever the impact is very different because wale distribution implicitly
distributes any form of local misalignment, and thus it is typically

Fig. 5. Examples of flat layouts for N = 8 stitches. Left: single-fold
with r = 2, right: c-shaped with s = F , l = 1, r = 2 andm = 5.

not notable when considering purely the topological graph struc-
ture. And even if it was noticeable, the seam penalty provides user
control to override any local misalignment.

8 MIXED FLAT/CIRCULAR SCHEDULING
For tubular structures, Narayanan et al. [2018] use two parameters:
a roll that represents the rotation of the cycle on the needle bed, and
a nibble that describes the different possible corner deformations
from the ideal aligned layout. This leads to 4N and 5N possible
layouts for N stitches, depending on whether N is odd or even.
Perhaps counter-intuitively, describing a flat layout involves a

much larger design space since needles can still be rotated along
and across the beds, but they have much fewer restrictions on their
location. Two simple layouts we consider are the single-fold layout,
and the C-shape layout, illustrated in Fig. 5.

8.1 Single-Fold Layout
The single-fold layout parameterizes the layout of N stitches by
using that of a tubular layout with 2N stitches, while using only its
N first stitches. In practice, there are some nibble configurations that
become invalid as the roll changes since we only have at most two
corners available at any time (on the side where the fold happens).
A priori, that puts us in the same space as circular layouts for

complexity (linear in N ), but the catch is that scheduling doesn’t
require only the layout itself for binding, but also to constrain the
available locations of other layouts. In the case of the circular layouts,
the pair (N , nibble) is sufficient to compute the extents of the layout –
i.e., the rotation doesn’t matter. In the flat case, however, the rotation
matters when packing cycles next to each others, which increases
the search space substantially.

8.2 C-Shape Layout
A common needle layout is called “C-shaped” which refers to a flat
structure that is potentially folded twice over the bed, to form a
C-shape (modulo some rotation).
One potential parameterization for such C-shaped layout is as

follows, sequentially:
• A number of main stitchesm ∈ [⌈N /2⌉;N ],
• A side for the main stitches s ∈ {F ,B}, and
• A number of secondary left stitches l ∈ [0;N −m].

From N ,m and l , we can infer the number r of secondary stitch
locations on the right side (for the secondary fold) as

r = N −m − l . (5)

Obviously, one can change the parameterization through that
substitution as is done in Fig. 5 with (s, l, r ) instead of (m, s, l). Fur-
thermore, note that we do not consider nibbles, although they would
matter in the general case.
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Sample Complexity Parameters
Target Size Sketch Charts Constraints Regions Stitches Instructions ∆tmin λsrs Options

4 feet
mannequin

beanie 2 8 3 13184 34892 0.25 0.0 Uniform branching
sweater 2 19 4 47624 97987 0.25 0.1 —
trousers 12 22 6 57254 120364 0.5 0.1 —

16 inch
mannequin

cardigan 4 12 4 12290 31351 0.25 0.1 Reverse time
dress 14 26 4 17238 41704 0.5 0.1 Reverse split
hoodie 6 18 5 12874 29136 0.5 0.3 —
jacket 5 17 4 11252 31184 1.0 0.1 Reverse split
turtleneck 8 24 4 13426 24752 0.25 0.1 —
shorts 4 23 3 2842 7673 0.25 0.1 Reverse split
l trousers 12 22 6 11104 25226 0.5 0.1 —
w trousers 6 14 3 14804 25014 0.25 0.1 Reverse split

Table 1. Statistics about the result samples shown in the paper. The number of stitches corresponds to the number of traced stitches which are
used to generate the schedule. Given that the yarn is traced twice over, this is twice the amount of stitches in the stitch graph.

N 2 5 10 20 50 100 200 500 1000
C(N ) 2 12 40 130 700 2650 10300 63250 251500

Table 2. The number of possible C-shape layouts given N stitches,
without taking the layout offset into account.

Unfortunately, because we need two parameters whose extents
vary proportionally to N , the number of possible layouts C(N )
becomes now quadratic in N , as further supported by Table 2.

The second issue concerns the extents of the layouts during left-to-
right packing on the bed (and collision avoidance between layouts).
In the general case, the scheduler should allow other flat layouts to
nest in between two folds of one C-shaped layout.

8.3 Simplified C-Shape Layout
Given some of the issues with the general C-Shape Layout, we in-
stead use a simplified version of it. Since our scheduler implementa-
tion does not support any form of nesting of layouts, the simplified
layout can assume that we don’t do any form of nesting. Further-
more, to make the layout exploration space linear, we restrict it to
use a single parameter that scales with the stitch number N .
We basically keep only the two first parameters of the previous

layout: a numberm ∈ [⌈N /2⌉;N ] ofmain stitches, and their side s ∈
{F ,B}. The remaining values l and r are inferredwhile assuming that
the secondary side spreads the folded stitches uniformly between
left and right side.

To avoid having to choose between layouts, we add an additional
parameter a ∈ {left, right, both} that describes the secondary layout:
either all packed on the left, right or spread evenly across both sides.
This is the default flat layout we use in practice.

9 SCALABILITY

9.1 Complexity
Table 1 provides statistics about each of the results presented in this
work. As can be observed, the number of charts varies a lot, but
most of our garments are made of a small number of simple regions
(from 3 to 6).

9.2 Parameters
Table 1 further includes a list of varying parameters across our
results. The default ∆tmin threshold was set to 0.25 and varied for
some of our samples so as to ensure simple merging interfaces.
The sampling tradeoff parameters were modulated through the
simplicity weights λsmpl, λsrs and the seam weight λseam. The other
weights were fixed: λcrs = λwale = λdist = 1. By default, we initially
set the course simplicity λsmpl = 0 to try and get perfect accuracy
and increased it between 0.1 and 0.3 when our initial knitting results
had issues with the scheduling (e.g. for the crotch section of the
trousers). By later adjusting the sketch, the course simplicity can
typically be reduced, if not completely removed (i.e. set back to
λsmpl = 0). The only final result which still required the simplicity
term was the hoodie with λsmpl = 0.1. The short-row simplicity
was set to λsrs = 0.1 by default. The two cases were it was changed
were the beanie for which we disabled short-rows completely, and
the hoodie which took us a few attempts to knit properly.

The last column of Table 1 lists options which are associated with
the individual results. Uniform branching was used to enforce that
the two ear flaps of the beanie would end up with the same number
of stitches on both sides, which leads to a much simpler layout
space. Reverse time is a simple toggle that allows the user to reverse
the sketch time instead of manually reversing the constraints. The
initial design of the cardigan had a time function from bottom to
top, which was then reversed. Reverse split corresponds to using a
more advanced form of stitch increase instead of the default, simpler
kickback increase. For those results, we used the reverse split inward
variant shown in Fig. 8.

9.3 Interactivity
Table 3 lists runtimes of different sections of our system. The fol-
lowing paragraphs provide an interpretation of these runtimes.

Mesh-based Timings. The left group (time, segment, geo) is mainly
mesh-dependent. The number of mesh levels highly impacts the run-
times. The first two parts (time and segment) deal with the iterative
system for specifying the time function and getting its correspond-
ing region graph. This all happens within a second, and feedback
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Sketch Charts Levels Time Segment Geo Regions Local Binding Stitches Wales Itfs Nodes Code
beanie 2 3 0.2 0.1 1.1 3 8.6 0.1 13184 12.1 0.4 0.8 1.1
sweater 2 3 0.1 0.1 0.3 4 5.2 13.5 47624 27.9 2.1 2.9 3.7
trousers 12 3 0.3 0.2 0.8 6 9.8 13.7 57254 40.9 1.9 3.9 6.6
cardigan 4 3 0.1 0.1 0.6 4 2.8 0.0 12290 3.3 0.0 0.0 0.7
dress 14 2 0.8 0.4 0.8 4 8.4 1.9 17238 17.3 1.3 0.8 1.8
hoodie 6 3 0.8 0.2 24.4 5 36.4 2.1 12874 7.8 17.6 0.1 1.3
jacket 5 3 0.5 0.1 12.9 4 18.8 1.7 11252 7.7 0.4 0.3 1.2
turtleneck 8 3 0.8 0.1 1.8 4 11.0 3.0 13426 10.6 1.2 0.4 0.8
shorts 6 2 0.1 0.1 1.0 3 4.2 0.4 2842 2.7 0.5 0.1 0.3
l trousers 12 3 0.2 0.4 0.8 6 7.8 1.9 11104 8.2 22.2 0.3 2.5
w trousers 6 3 0.6 0.2 2.5 3 13.0 0.7 14804 7.3 0.2 0.2 0.8

Table 3. Runtimes using a single computation thread. Sections that are not included (e.g., global sampling, short-row insertion, offset opti-
mization) are too fast to be relevant (typically less than 100 milliseconds is spent). The column values correspond either to number counts or
time measurements in seconds.

typically comes in even less time given the coarse-to-fine, iterative
nature of our computations.

The Geo column considers the geodesic distance precomputation,
which is not triggered until sampling. Sec. 6 presents our default
strategy based on the Heat Method [Crane et al. 2017]. For the
sketches hoodie, jacket and w trousers, we had to resort to a
simpler Dijkstra-based precomputation because of issues with the
underlying meshing implementation. This leads to a major overhead.

Region-based Timings. The center group (local, binding) is bound
to the number of regions and their interfaces.While local sampling is
one of the two most expensive stages of our computations, it could
easily be parallelized (at least by region). Similarly, the binding
computation could be parallelize, but we note that the current large
times are for cases where such binding is spent mostly at a single
interface, and thus would be hard to parallelize. However, since a
lot of the computations done during that step are very similar to the
scheduling of interfaces, we may benefit from sharing information
across both sides (to speed up the scheduler).

Stitch-based Timings. Wale distribution is the othermost intensive
computation of our system, but it can also easily be parallelized, and
at even larger scale. One element that is less visible in this table is
that the variance of the remaining scheduling operations can highly
vary depending on the symmetries of the structure to be scheduled
(up to the eveness of the number of stitches).

9.4 Convergence of the Optimizations
The time function computation is prone to local extrema. As dis-
cussed in the curvature section, this is highly dependent on the user-
specified constraints and their interactions. For example, close-by
time isoline constraints can lead to large time stretching which make
the underlying system poorly conditioned (because the constrained
sketches do not represent flat intrinsic geometry anymore). Another
example is that of nearby conflicting directions constraints. Our
strategy is focused on getting early visual feedback (both through a
coarse-to-fine computation, and fast iterative updates), so that the
user can explore those issues interactively and address them.

The stitch graph sampling has two main hierarchical steps that
behaves quite differently in terms of convergence. In practice, none
showed cases of obvious local extrema, but this is likely because
our garment results had simple shaping constraints.

9.4.1 Global Sampling. typically converges well because the vari-
ables interact in small groups, purely locally, for which branch and
bound can quickly reach a global extremum.

9.4.2 Local Sampling. has a more complex, sequential interaction
profile (constraints between adjacent isolines) that can supposedly
lead to bad local extrema in case of wild shaping. We did not en-
counter odd behaviors in our examples. We had mainly two regimes:
(1) fast single-direction shaping regions for which the local region
boundaries would induce an obvious single optimal solution (e.g.,
top of sweater), and (2) slowly shaping regions for which the the
local constraint interactions were reasonably far, and thus with good
convergence. We expect that the main cases where local extrema
would occur are for reasonably fast shaping regions that alternate
increase/decrease within nearby locations. One solution to those
would be to allow the user to subdivide the regions locally, which
would break ambiguities at the local region level.

10 THE IMPORTANCE OF DETAILS
We highlight three different aspects that have important impacts
on the final garment appearance: the impact of colorwork and cus-
tomizable stitch patterns, the implementation of specific knitting
procedures, the problem of proper sizing, and the placement of seams.

Customizing stitch patterns. Fig. 6 shows that for a same shape in
our system, the addition of some color work can have a dramatic
impact on the perceived quality of the result. Having proper tools
to design this on top of the stitch graph would make our system
much more effective for customization.

Sizing. Sizing is a critical part of garment design. Our system
allows to specify the final scale, but getting the proper scale can be
tricky. In the sweater of Fig. 7, by slightly changing the scale, we
go from a shirt that looks pretty tight, to one that is appropriately
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Fig. 6. The addition of color work and stitch patterns can highly
improve the final appearance, which calls for dedicated means to
specify those.

Fig. 7. Two slight scale variations of a same shirt input showing the
importance of proper sizing.

loose, if not too loose. Having dedicated size constraints as part of
our time constraint design tool would be very helpful.

Knitting Procedures. Fig. 8 shows that the type of knitting pro-
cedures for local aspects of shaping can have a big impact on the
final appearance. We highlight here the case of the shaping increase
procedure, which is purely local to the stitch it happens at. It results
in varying degrees of tightness, and potential visible hole artifacts
that can be important.

Seams. As mentioned in the main paper, we provide support for
editing the seam placement interactively. Here we show closer looks
at some triangular patterns in Fig. 9 that highlight some of what
works and some of what does not. The seam location is not the
only part of the design that matters for the final appearance of the
seam. One needs sufficient alignment between successive irregular
stitches to produce an appealing seam. Furthermore, the general
clusters of wale directions also plays an important role in making
the seams appear more or less visible.

11 INDIVIDUAL RESULTS
The rest of this document provides top-down closeup pictures of
the results, together with visualization of the inputs (linking, con-
straints), the results of the time computation and decomposition
(time, time stretch, regions) and the sampled stitch graph.

The format of those figures is as follows:

• the left/top of the first figure shows top-down views of differ-
ent sides of the samples (including potential inside-out view
for colorwork),

• the right/bottom of the first figure shows successively:
– the input linking,
– its direction and time constraints,
– a visualization of the underlying time function,
– a visualization of the corresponding time stretch,
– a visualization of its regions, and
– its stitch graph overlaid on the sketch atlas.

• the second figure provides the stitch program that was used
to define the operations on the stitches of the final stitch
graph. By default, all stitches are associated with a program
that depends on their connectivity: Knit for 1-1 and 2-1 con-
nectivity, and Kickback Knit, Split, Reverse-Split or Miss for
each elements of an increase pair 1-2.

12 VARIANTS OF KNITTED SAMPLES
Our knitting process was obviously not without flows. We end the
supplementary by highlighting the evolution of some of our samples,
which shows the iterative nature of weft knitting.

Most of our samples required multiple iterations, notably to get
the size right, adjusting the shape when the induced scheduling was
leading to failure, or to test different types of stitch patterns and
color work.
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Fig. 8. Local appearance of different stitch increase procedures, from left to right: kickback, reverse split inward, reverse split outward, split
outward.

Fig. 9. Illustration of the impact of seam annotations with the corresponding irregular stitch placement.


